本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 06:42
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 03:48
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 02:54
AIStudio3.0.0分钟数据获取请转移至:
https://bigquant.com/wiki/doc/5yig6zkf5pww5o2u6i635yw-6fK4a8ZOZx
[https://bigquant.com/experimentshare/893162aea1dc4c4f953f670293646709](https://bigquant.com/experimentshare/893162aea1dc4c4f953f6
更新时间:2024-05-17 01:13
若想在AIStudio3.0.0种复现这个策略, 请空降:
https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq
如何结合欧奈尔的RPS指标,开发AI量化策略?
1988年,欧奈尔将他的投资
更新时间:2024-05-17 01:13
更新时间:2024-05-16 06:36
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:44
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:44
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:35
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:59
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:51
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 10:40
很多朋友都在尝试使用平台的分钟数据,下面介绍一下分钟数据的读取与分时策略的构建。
df1 = DataSource('bar1m_000001.SZA').\
read(start_date='2015-01-01',end_date='2015-05-01').set_index('date')
更新时间:2024-05-15 02:10
更新时间:2024-05-15 02:10
本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。
相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。
单个资产的多因子模型可以表示成:
,更是难觅踪影。在本篇报告中,我们尝试解答如下问题:能否从分钟行情数据中,发现“聪明钱”行动的蛛丝马迹?
我们首先利用聪明度指标S,从分钟数据中筛选出属于“聪明钱”的交易。在此基础上,我们构造了聪明钱情绪因子Q,该因子实际上反映了聪明钱参与交易的相对价位。因子Q的值越大,表明聪明钱的交易越倾向于出现在价格较高处,这是逢高出货的表现,反映其悲观态度;因子Q的值越小,则表明聪明钱的交易多出现在价格较低处,这是逢低吸筹的表现,反映其乐观情绪。
根据情绪因子Q对所有A股进行排序并等分五组,多空
更新时间:2023-06-01 14:28
近年来,随着投资者对于因子选股体系研究的深入,选股因子值的处理也在逐渐细化。本文主要对于选股因子的正交进行了讨论。之所以讨论因子的正交是因为在传统的多因子模型中,选取的因子之间往往存在着相关性,而这种相关性并不稳定。因此相关性的存在会复杂因子权重的分配。对于等权分配因子权重的多因子模型,由于因子之间相关性的存在,模型可能实际上对于某一因子有更高的暴露(例如,市值因子)。对于权重优化的模型,相关性的影响可能会更大。因此,本文考虑在构建因子的时候就对于相关性进行剔除从而达到更为可控的因子暴露。
选股因子截面相关性波动较大。以市值因子与反转因子为例,虽然两因子截面相关性长期来看均值较
更新时间:2023-06-01 14:28